Superacid-catalysed arylation and rearrangement in 2-hydroxy-2,2'-biindan-1,1',3,3'-tetrone and facile synthesis of 4-substituted phthalazinones

Suven Das^a, Roland Fröhlich^b and Animesh Pramanik^a*

^aDepartment of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata-700 009, India ^bOrganisch-Chemisches Institut, Universität Münster, Corrensstraße 40, D-48149 Münster, Germany

2-Hydroxy-2,2'-biindan-1,1',3,3'-tetrone **1** upon stirring with moderately activated and deactivated arenes in superacidic triflic acid (CF_3SO_3H , TfOH) medium produces arylated adducts 2-aryl-2,2'-biindan-1,1',3,3'-tetrones **3** within 1-2 h. Prolonged stirring (12–24 h) of the same reaction mixture gives rearranged products 3-(aryl-1,3-indanedionylmethylene)isobenzofuranones **4** involving three types of regioselectivity. The arylated adducts **3** and rearranged products **4** undergo nucleophilic ring opening and condensation with hydrazine hydrate to produce 4-substituted mono- and diphthalazinones depending upon the reaction temperature.

Keywords: 2-hydroxy-2,2'-biindan-1,1',3,3'-tetrone, superacid, isobenzofuranones, phthalazinones, hydrazine hydrate

The acid-catalysed condensation of 2-hydroxy-2,2'-biindan-1,1',3,3'-tetrone **1** with activated aromatics has been studied recently.¹ However, condensation of **1** with moderately activated and deactivated aromatics such as benzene, toluene and halobenzenes has not been studied yet. Several reports have appeared where superacidic triflic acid (CF₃SO₃H, TfOH) has been exploited to carry out electrophilic chemistry of 1,2- and 1,3-dicarbonyl compounds including ninhydrin,^{2,3} but the electrophilic chemistry of **1**, a structurally complex system remains totally unexplored. We now report an extensive study of the electrophilic chemistry of **1** in a superacid medium. This study also creates an opportunity for exploring the synthetic aspects of tetrones in heterocyclic chemistry.

Generally 4-substituted (2H)-phthalazinones are found to possess important biological activities such as antibacterial,⁴ antifungal,⁴ antidiabetic⁵ and antiallergic activities.⁶ They are also suitable intermediates for the synthesis of inhibitors of the VEGF (vascular endothelial growth factor)-receptor tyrosine kinases which are utilised for the treatment of cancer.7 Phthalazinone derivatives can play important role in the development of antiasthmatic agents with the dual activities of thromboxane A2 (TXA2) synthetase inhibitor and bronchodilation.⁸ The phthalazinone nucleus has been proved to be a versatile system in medicinal chemistry. Various derivatives of it are well recognised pharmacophores that show a wide range of biological activities. Despite the useful nature of phthalazinones, there are only a limited number of synthetic approaches available⁹ and, therefore, synthesis and functionalisation of phthalazinones continues to be of interest. We now report an efficient and general method for the preparation of a new class of potentially bio-active and structurally complex 4-substituted (2H)-phthalazinones starting from an easily achievable tetrone.

Results and discussion

In the present study, it has been observed that moderately activated and deactivated aromatics such as benzene, toluene, halobenzenes condense smoothly with 1 in superacidic triflic acid medium within 1-2h (Scheme 1, Table 1). The condensation products **3a-f** are formed regioselectively, exclusively *para* to the substituents. ¹H and ¹³C NMR spectra of the adducts **3a-f** display a symmetrical pattern for two 1,3-dioxoindane moieties indicating a tetraketo structure with a plane of symmetry. X-ray crystal structures of 3b and 3f, derived from fluorobenzene and toluene respectively, show the formation of symmetrical adducts (Figs 1 and 2).¹⁰ In superacid medium 1 reacts with deactivated arenes such as fluoro- and chloro-benzene to produce the arylated adducts 3b and 3c, in good yields (Table 1). These results indicate that in superacid medium, 1 generates some reactive electrophiles such as 2 which then carry out normal electrophilic substitution to give **3a-f** (Scheme 1).

Scheme 1

Table 1	Formation	of adducts 3a-f	and rearranged	products 4a-e from 1
---------	-----------	-----------------	----------------	------------------------------------

Arenes		Adducts 3			Rearranged products 4		
		Yield/%ª	M.p./oCb		Yield/%a	Time/h	M.p./oCb
Benzene	3a	80	238–239	4a	60	20	266–267
Fluorobenzene	3b	82	191–192	4b	67	12	239–240
Chlorobenzene	3c	82	202-203	4c	65	12	210-211
Bromobenzene	3d	80	189-190	4d	52	20	209-210
lodobenzene	3e	78	205-206	4e	50	24	223-224
Toluene	3f	82	230-231				

^aYields refer to pure isolated products. ^bM.p.s are uncorrected.

* Correspondent. E-mail: animesh_in2001@yahoo.co.in

Fig. 1 X-ray crystal structure of 3b with atom numbering scheme.

When arenes are stirred with 1 in triflic acid for a long period, totally different products are formed. The products are identified as isobenzofuranone derivatives 4a-e (Table 1, Scheme 1). The adducts 3a-e also give 4a-e upon stirring in triflic acid. ¹H and ¹³C NMR spectra of these adducts indicate an unsymmetrical structure. In the formation of 4, three types of regioselectivity are observed. Firstly, the electrophilic attack occurs exclusively to the para position of the halobenzenes. Secondly, only the C-2 arylated 1,3-indanedionyl moiety takes part in the rearrangement to form the isobenzofuranone ring. Thirdly, the exocyclic 1,3-indanedionyl group in 4 is always in *trans* disposition with respect to the benzene ring of isobenzofuranone. As a result, selectively only one geometrical isomer is formed. These complex structural features of 4 are confirmed by the X-ray crystal structure of 4b (Fig. 3).¹⁰ In general, the rearrangement is found to be facile for compounds with electron-withdrawing substituents such as fluoro- and chlorobenzene (Table 1). Whereas for benzene and weakly electron-withdrawing arenes, such as bromoand iodo-benzene the rearrangements are comparatively less facile (Table 1). In the case of electron-donating toluene the rearranged product of type 4 was not formed at all even after 3 days of stirring in triflic acid. Only the arylated adduct 3f was isolated. In the formation of 4, a dicationic intermediate 5a may be formed which then undergoes ring-opening to spread out the accumulated positive charge on the carbonyl group (Scheme 2).² Subsequently a ring-closure produces 4. Note that only the C-2 arylated 1,3-indanedionyl moiety of 3 participates in the rearrangement, because of the stability of intermediate 5b.

Scheme 2

Fig. 2 X-ray crystal structure of 3f with atom numbering scheme.

The adducts 3a-f formed in superacid medium possess two 1,3-dicarbonyl moieties. Therefore nucleophilic attack on a C=O may facilitate the breaking of C_1 - C_2 or C_1 - C_2 bonds. Interestingly simple stirring of **3a-f** in hydrazine hydrate (99%) produces 4-[α -aryl- α -1,3-indanedionylmethyl]-1-(2H) phthalazinones 6a-f in good yields (Scheme 3, Table 2). A set of adducts 3g-j derived from the condensation of 1 with activated arenes such as anisole, veratrole, o-cresol and thymol,¹ also produces phthalazinones 6g-j on treatment with hydrazine hydrate (Scheme 3). The structure of 6 was determined by ¹H and ¹³C NMR spectroscopic analysis. In the ¹H NMR two characteristic doublets corresponding to two vicinal aliphatic protons in the side chain of 6 are observed, e.g. 6a: 5.54 (d, J = 3.8 Hz, 1H), 3.58 (d, J = 3.8 Hz, 1H). Interestingly rearranged products 4 also give 6 on stirring in hydrazine hydrate (Scheme 3). The crystal structure of 6j is presented in Fig. 4.¹⁰

When adducts **3** are refluxed in hydrazine hydrate (99%) more complex phthalazinones such as 1-aryl-1,2-di[3,4-dihydro-4-oxophthalazin-1-yl]ethanes **7** are formed

 Table 2
 Formation of phthalazinones 6a-j from 3a-j

Substrates	Products	Time/h	Yield/%	M.p./°C
3a	6a	3.0	71	256–257
3b	6b	3.0	73	273-274
3c	6c	2.5	74	251–252
3d	6d	2.0	70	225–226
3e	6e	2.0	68	278–279
3f	6f	2.5	75	284–285
3g	6g	2.0	76	265–266
3h	6h	2.5	75	247–248
3i	6i	2.0	72	285–286
3j	6j	3.0	72	288–289

Fig. 3 X-ray crystal structure of ${\bf 4b}$ with atom numbering scheme.

Scheme 3

Fig 4 X-ray crystal structure of 6j with atom numbering scheme

(Scheme 3, Table 3). They are confirmed by ¹H and ¹³C NMR studies in DMSO- d_6 . Due to the presence of the chiral centre at C_1 the methylene protons at C_2 become magnetically nonequivalent producing an ABX type of system. As a result two doublet of doublets (dd) proton signals are observed at $\delta 4.10$ (dd, J = 16.0, 9.1 Hz) and 3.39 (dd, J = 16.0, 5.6 Hz) for methylene protons in the case of 7a. The proton at C₁ should then appear as a double doublet (dd) with coupling constants of 5.6 and 9.1. Actually it has appeared as a quartet (q) at δ 5.37 because one coupling constant is almost double the value of the other. This is a common feature observed in all compounds 7. The ¹H NMR spectrum of 7a also shows two characteristic singlets at δ 12.59 and 12.32 for two amide protons. All the compounds 7 have similar spectroscopic (¹H and ¹³C NMR) characteristics to those of 7a. The present method provides a general and efficient route to complex 4-substituted phthalazinones which are otherwise difficult to prepare.

Table 3 Formation of phthalazinones 7a-j from 3a-j

Substrates	Products	Time/h	Yield/%	M.p./°C
3a	7a	9.0	60	354–56
3b	7b	9.0	62	303–04
3c	7c	8.0	60	334–35
3d	7d	8.0	58	350–52
3e	7e	9.0	55	356–58
3f	7f	8.0	60	332–34
3g	7g	9.0	65	325–26
3h	7ĥ	9.0	62	318–20
3i	7i	9.0	62	336–38
3j	7j	9.0	55	303–04

Scheme 4

A proposed mechanism for the formation of **6** from **3** is depicted in Scheme 4. The nucleophilic attack of hydrazine at either of the carbonyl groups at C_1 or C_3 of **3** produces the open chain hydrazide **8**, which undergoes a subsequent intramolecular nucleophilic attack to the other C=O group, followed by dehydration to produce **6**. The same series of reactions are repeated by the remaining 1,3-indanedionyl group of **6** to give the final products **7**. Isobenzofuranones **4** also react with hydrazine hydrate in a similar way to **3** (Scheme 4). Under the heating conditions none of the intermediates, such as **8**, **6**, *etc.*, could be isolated.

In summary, we have shown that in a superacid medium 2-hydroxy-2,2'-biindan-1,1',3,3'-tetrone **1** condenses with moderately activated and deactivated aromatics to produce arylated adducts, 2-aryl-2,2'-biindan-1,1',3,3'-tetrones **3**. Prolonged stirring of the same reaction mixture affords rearranged products 3-(aryl-1,3-indanedionylmethylene)isobenzofuranones **4**. Both the arylated adducts **3** and rearranged products **4** can also generate 4-substituted phthalazinones such as 4- $[\alpha$ -aryl- α -1,3-indanedionylmethyl]-1-(2*H*)phthalazinones **6** and 1-aryl-1,2-di[3,4-dihydro-4-oxophthalazin-1-yl]ethanes 7 by condensation with hydrazine hydrate.

Experimental

Melting points were determined in open capillary tubes and were uncorrected. IR spectra were examined in KBr disc on a Perkin Elmer-782 spectrophotometer. Proton magnetic resonance spectra (¹H NMR) and carbon magnetic resonance spectra (¹C NMR) were recorded on a Bruker Avance 300 (300 MHz) or a Bruker DRX-500 (500 MHz) spectrometer in the solvents indicated. Elemental analyses were performed on a Perkin-Elmer 240 C analyser. Triflic acid (CF₃SO₃H) was purchased from Aldrich and used as received.

General procedure for preparation of 2-aryl-2,2'-biindan-1,1',3,3'tetrones (**3a-f**)

To a solution of 1 (0.43 g, 1.4 mmol) in triflic acid (2 ml), 1 ml of the arene was added (Table 1). The mixture was stirred at room temperature for 1-2 h under a dry atmosphere and then poured over crushed ice. The products were extracted with CHCl₃. The combined organic layers were washed with water and brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The resulting products were purified by silica-gel column chromatography using ethyl acetate/petroleum ether as eluent. The solid products were further purified by crystallisation from CHCl₃/petroleum ether.

2-Phenyl-2,2'-biindan-1,1',3,3'-tetrone (**3a**): Colourless crystals; m.p. 238–239°C. IR (KBr): 1710, 1591, 1265, 761 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 8.02–7.82 (m, 8 H), 7.49–7.37 (m, 5 H), 4.32 (s, 1 H). ¹³C NMR (75 MHz, CDCl₃): δ = 197.9 (2C), 196.5 (2C), 142.0 (2C), 141.5 (2C), 136.0 (2C), 135.7 (2C), 132.9, 128.8 (2C), 128.3, 127.6 (2C), 124.0 (2C), 123.2 (2C), 63.5, 55.9 Anal. Calcd for C₂₄H₁₄O₄: C, 78.68; H, 3.85. Found: C, 78.8; H, 4.0%. 2-(4-Fluorophenyl)-2,2'-biindan-1,1',3,3'-tetrone (**3b**): Colourless

2-(4-Fluorophenyl)-2,2'-biindan-1,1',3,3'-tetrone (**3b**): Colourless crystals; m.p. 191–192°C. IR (KBr): 1707, 1590, 1508, 1261, 767 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): $\delta = 7.99-7.98$ (m, 2 H), 7.89–7.80 (m, 6 H), 7.45–7.42 (m, 2 H), 7.08–7.03 (m, 2 H,), 4.24 (s, 1 H). ¹³C NMR (75 MHz, CDCl₃): $\delta = 197.8$ (2C), 196.5 (2C), 142.0 (2C), 141.4 (2C), 136.1 (2C), 135.8 (2C), 129.5, 129.4, 124.1 (2C), 123.3 (2C), 116.0 (2C), 115.7 (2C), 62.6, 55.9. Anal. Calcd for C₂₄H₁₃FO₄: C, 75.00; H, 3.41. Found: C, 75.1; H, 3.55%.

2-(4-Chlorophenyl)-2,2'-biindan-1,1',3,3'-tetrone (3c): Colourless crystals; m.p. 202–203°C. IR (KBr): 1707, 1587, 1260, 749 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 8.02-7.98$ (m, 2 H), 7.92–7.82 (m, 6 H), 7.42 (d, *J* = 9.0 Hz, 2 H), 7.35 (d, *J* = 9.0 Hz, 2 H), 4.26 (s, 1 H). ¹³C NMR (75 MHz, CDCl₃): $\delta = 197.6$ (2C), 196.3 (2C), 141.9 (2C), 141.4 (2C), 136.2 (2C), 135.8 (2C), 134.7, 131.3, 129.1 (2C), 129.0 (2C), 124.1 (2C), 123.3 (2C), 62.6, 55.9. Anal. Calcd for C₂₄H₁₃ClO₄: C, 71.91; H, 3.27. Found: C, 72.0; H, 3.4%.

2-(4-Bromophenyl)-2,2'-biindan-1,1',3,3'-tetrone (3d): Colourless crystals; m.p. 189–190°C. IR (KBr): 1707, 1586, 1259, 748 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 8.03-7.97$ (m, 2 H), 7.91–7.80 (m, 6 H,), 7.50 (d, J = 9.0 Hz, 2 H), 7.35 (d, J = 9.0 Hz, 2 H), 4.26 (s, 1 H). ¹³C NMR (75 MHz, CDCl₃): $\delta = 197.6$ (2C), 196.3 (2C), 141.9 (2C), 141.3 (2C), 136.2 (2C), 135.8 (2C), 132.0 (2C), 131.9, 129.2 (2C), 124.0 (2C), 123.3 (2C), 122.9, 62.7, 55.8. Anal. Calcd for C₂₄H₁₃BrO₄: C, 64.74; H, 2.94. Found: C, 64.85; H, 3.1%. 2-(4-lodophenyl)-2,2'-biindan-1,1',3,3'-tetrone (3e): Colourless

2-(4-Iodophenyl)-2,2'-biindan-1,1',3,3'-tetrone (3e): Colourless crystals; m.p. 205–206°C. IR (KBr): 1702, 1587, 1261, 753 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 7.99–7.95 (m, 2 H), 7.89–7.77 (m, 6 H), 7.66 (d, *J* = 8.7 Hz, 2 H), 7.17 (d, *J* = 8.7 Hz, 2 H), 4.21 (s, 1 H). ¹³C NMR (75 MHz, CDCl₃): δ = 197.2 (2C), 196.0 (2C), 141.6 (2C), 141.0 (2C), 137.6 (2C), 135.8 (2C), 135.5 (2C), 132.3, 129.1 (2C), 123.7 (2C), 123.0 (2C), 94.4, 62.5, 55.4. Anal. Calcd for C₂₄H₁₃IO₄: C, 58.56; H, 2.66. Found: C, 58.7, H 2.8%.

2-(4-Methylphenyl)-2,2'-biindan-1,1',3,3'-tetrone (**3f**): Colourless crystals; m.p. 230–231°C. IR (KBr): 1707, 1587, 1260, 767 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 7.99-7.96$ (m, 2 H,), 7.89–7.79 (m, 6 H), 7.33 (d, J = 9.0 Hz, 2 H), 7.18 (d, J = 9.0 Hz, 2 H), 4.27 (s, 1 H), 2.33 (s, 3 H). ¹³C NMR (125 MHz, CDCl₃): $\delta = 198.4$ (2C), 197.1 (2C), 142.5 (2C), 141.9 (2C), 138.7, 136.3 (2C), 136.1 (2C), 130.2, 130.1 (2C), 127.9 (2C), 124.4 (2C), 123.7 (2C), 63.8, 56.2, 21.5. Anal. Calcd for C₂₅H₁₆O₄: C, 78.94; H, 4.24. Found: C, 79.05; H, 4.4%.

General procedure for preparation of 3-(aryl-1,3-indanedionylmethylene)-isobenzofuranones (4a–e)

4a–e were prepared following a similar procedure to that of **3a–f**, except the reaction mixture was stirred for 12-24 h instead of 1-2 h (Table 1).

3-(Phenyl-1,3-indanedionylmethylene)isobenzofuranone **(4a):** Light yellow crystals; m.p. 266–267°C. IR (KBr): 1788, 1703, 1588, 1281, 1217, 989, 761 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\begin{array}{l} \delta = 8.02 - 7.98 \ (m, 2 \ H), 7.90 - 7.83 \ (m, 3 \ H), 7.50 - 7.34 \ (m, 7 \ H), 6.45 \ (d, \\ J = 7.8 \ Hz, 1 \ H), \ 4.86 \ (s, 1 \ H). \ ^{13}\text{C} \ \text{NMR} \ (75 \ \text{MHz}, \ \text{CDCl}_3); \\ \delta = 196.9 \ (2\text{C}), \ 165.8, \ 142.3 \ (2\text{C}), \ 137.7, \ 135.8 \ (2\text{C}), \ 135.0, \ 134.1, \\ 130.0, \ 129.7 \ (2\text{C}), \ 129.2 \ (2\text{C}), \ 128.9, \ 125.7, \ 125.3, \ 123.6 \ (2\text{C}), \ 123.3, \\ 116.6, \ 59.8, \ \text{Anal.} \ \text{Calcd for} \ \text{C}_{24}\text{H}_{14}\text{O}_4; \ \text{C}, \ 78.68; \ \text{H}, \ 3.85. \ \text{Found: C}, \\ 78.8; \ \text{H}, \ 4.0\%. \end{array}$

3-(4-Fluorophenyl-1, 3-indanedionylmethylene)isobenzofuranone (4b): Yellow crystals; m.p. 239–240°C. IR (KBr): 1788, 1707, 1592, 1262, 1223, 1009, 972, 764 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ = 7.99–7.96 (m, 2 H), 7.89 (d, J = 7.7 Hz, 1 H), 7.86–7.83 (m, 2 H), 7.48 (t, J = 7.6 Hz, 1 H), 7.39–7.36 (m, 3 H), 7.08 (t, J = 8.6 Hz, 2 H), 6.44 (d, J = 7.9 Hz, 1 H), 4.85 (s, 1 H). ¹³C NMR (75 MHz, CDCl₃): δ = 197.8 (2C), 165.6, 147.1, 142.2 (2C), 137.5, 135.9 (2C), 134.2, 131.8, 131.7, 130.2, 125.7, 125.5, 123.6 (2C), 123.1, 116.5 (2C), 116.2 (2C), 115.4, 59.8. Anal. Calcd for C₂₄H₁₃FO₄: C, 75.00; H, 3.41. Found: C, 75.1; H, 3.6%.

3-(4-Chlorophenyl-1,3-indanedionylmethylene)isobenzofuranone (4c): Yellow crystals; m.p. 210–211°C. IR (KBr): 1788, 1705, 1589, 1261, 1007, 971, 764 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 8.00–7.96 (m, 2 H), 7.90–7.81 (m, 3 H), 7.52–7.34 (m, 6 H), 6.52 (d, J = 9.0 Hz, 1 H), 4.84 (s, 1 H). ¹³C NMR (75 MHz, CDCl₃): δ = 196.7 (2C), 165.6, 147.1, 142.2 (2C), 137.5, 135.9 (2C), 135.1, 134.3, 133.4, 131.2 (2C), 130.3, 129.6 (2C), 125.7, 125.5, 123.6 (2C), 123.2, 115.2, 59.7. Anal. Calcd for C₂₄H₁₃ClO₄: C, 71.91; H, 3.27. Found: C, 72.05; H, 3.4%.

3-(4-Bromophenyl-1,3-indanedionylmethylene)isobenzofuranone (4d): Light yellow crystals; m.p. 209–210°C. IR (KBr): 1788, 1705, 1586, 1260, 1005, 970, 761 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 7.99-7.95$ (m, 2 H), 7.89–7.83 (m, 3 H), 7.52 (d, J = 9.0 Hz, 2 H), 7.49–7.39 (m, 2 H), 7.28 (d, J = 9.0 Hz, 2 H), 6.52 (d, J = 9.0 Hz, 1H), 4.83 (s, 1 H). ¹³C NMR (75 MHz, CDCl₃): $\delta = 196.7$ (2C), 165.6, 147.0, 142.2 (2C), 137.5, 136.0 (2C), 134.3, 134.0, 132.5 (2C), 131.5 (2C), 130.3, 125.7, 125.6, 123.7 (2C), 123.4, 123.2, 115.2, 59.7. Anal. Calcd for C₂₄H₁₃BrO₄: C, 64.74; H, 2.94. Found: C, 64.9; H, 3.1%.

3-(4-Iodophenyl-1,3-indanedionylmethylene)isobenzofuranone (4e): Light yellow crystals; m.p. 223–224°C. IR (KBr): 1788, 1711, 1590, 1276, 1105, 765 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 8.22-8.15$ (m, 2 H), 7.97–7.83 (m, 6 H), 7.75 (d, J = 8.7 Hz, 2 H), 7.31 (d, J = 8.4 Hz, 2 H), 4.65 (s, 1 H). Anal. Calcd for C₂₄H₁₃IO₄: C, 58.56; H, 2.66. Found: C, 58.6; H, 2.8%.

General procedure for preparation of $4-[\alpha-aryl-\alpha-1,3-indanedionylmethyl]-1-(2H)phthalazinones (6a–j): The appropriate substrate 3a–j (1.4 mmol) was added to hydrazine hydrate (10 ml, 99%) and the mixture was stirred at room temperature for the time indicated in Table 2. Then it was acidified with HCl (6 M) to pH 6. The solid product separated was filtered and washed thoroughly with water. The resulting solids were purified by crystallisation from acetone.$

4-[α-Phenyl-α-1, 3-indanedionylmethyl]-1-(2H)phthalazinone (6a): Colourless crystals; m.p. 256–257°C. IR (KBr): 3385, 3186, 3059 (N–H), 1702, 1659 (C=O), 1255, 758 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 9.71 (s, N–H), 8.36–8.33 (m, 1 H), 8.00–7.92 (m, 2 H), 7.88–7.78 (m, 2 H), 7.71–7.60 (m, 2 H), 7.52–7.50 (m, 1 H), 7.36–7.30 (m, 5 H), 5.54 (d, *J* = 3.8 Hz, 1 H), 3.58 (d, *J* = 3.8 Hz, 1 H). ¹³C NMR (75 MHz, CDCl₃): δ = 199.0, 197.6, 159.7, 144.3, 143.0, 140.8, 138.7, 135.4, 134.7, 133.4, 131.4, 129.1 (2C), 129.0, 128.7 (2C), 128.2, 127.6, 126.9, 125.8, 123.1, 122.9, 56.5, 47.4. Anal. Calcd for C₂₄H₁₆N₂O₃: C, 75.78; H, 4.24; N, 7.37. Found: C, 75.9; H, 4.4; N, 7.3%.

4-[α-(4-Fluorophenyl)-α-1, 3-indanedionylmethyl]-1-(2H)phthalazinone (6b): Off-white crystals; m.p. 273–274°C. IR (KBr): 3178, 3051 (N–H), 1706, 1656 (C=O), 1597, 1253, 752 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 9.53 (s, N–H), 8.37–8.35 (m, 1 H), 8.02–7.93 (m, 2 H), 7.90–7.80 (m, 2 H), 7.73–7.63 (m, 2 H), 7.50–7.48 (m, 1 H), 7.36–7.31 (m, 2 H), 7.08–7.03 (m, 2 H), 5.52 (d, J = 3.9 Hz, 1 H), 3.55 (d, J = 3.9 Hz, 1 H). ¹³C NMR (75 MHz, CDCl₃): δ = 197.8, 197.7, 159.6, 144.1, 142.9, 140.9, 135.6, 134.8, 133.5, 131.6, 130.8, 130.7, 128.8, 128.3, 127.1, 125.7, 123.2, 123.0, 115.9 (2C), 115.6 (2C), 56.4, 46.6. Anal. Calcd for C₂₄H₁₅FN₂O₃: C, 72.36; H, 3.80; N, 7.03. Found: C, 72.5; H, 3.95; N, 7.1%.

4-[α-(4-Chlorophenyl)-α-1, 3-indanedionylmethyl]-1-(2H)phthalazinone (6c): Off-white crystals; m.p. 251–252°C. IR (KBr): 3175, 3047 (N–H), 1707, 1656 (C=O), 1594, 1253, 753 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 9.53 (s, N–H), 8.38–8.35 (m, 1 H), 8.01–7.94 (m, 2 H), 7.91–7.82 (m, 2 H), 7.73–7.63 (m, 2 H), 7.48–7.46 (m, 1 H), 7.36–7.31 (m, 4 H), 5.50 (d, J = 3.8 Hz, 1 H), 3.55 (d, J = 3.8 Hz, 1 H). ¹³C NMR (75 MHz, CDCl₃): δ = 198.7, 197.6, 159.7, 143.8, 142.9, 140.8, 137.2, 135.6, 134.9, 133.6, 133.5, 131.6, 130.5 (2C), 129.0 (2C), 128.8, 128.3, 127.1, 125.6, 123.2, 123.0, 56.3, 46.7. Anal. Calcd for $C_{24}H_{15}ClN_2O_3$: C, 69.48; H, 3.64; N, 6.75. Found: C, 69.6; H, 3.7; N, 6.65%.

4-[α-(4-Bromophenyl)-α-1,3-indanedionylmethyl]-1-(2H) phthalazinone (6d): Light yellow crystals; m.p. 225–226°C. IR (KBr): 3178, 3051 (N–H), 1708, 1657(C=O), 1594, 1254, 752 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 9.50 (s, N–H), 8.37–8.34 (m, 1 H), 8.01–7.95 (m, 2 H), 7.90–7.79 (m, 2 H), 7.73–7.63 (m, 2 H), 7.51–7.45 (m, 3 H), 7.27 (d, *J* = 9.0 Hz, 2 H), 5.49 (d, *J* = 3.8 Hz, 1 H), 3.55 (d, *J* = 3.8 Hz, 1 H). ¹³C NMR (75 MHz, CDCl₃): δ = 198.6, 197.5, 159.6, 143.7, 142.9, 140.8, 137.7, 135.6, 134.9, 133.6, 131.9 (2C), 131.6, 130.8 (2C), 128.7, 128.3, 127.1, 125.6, 123.2, 123.0, 121.8, 56.2, 46.7. Anal. Calcd for C₂₄H₁₅BrN₂O₃: C, 62.76; H, 3.29; N, 6.10. Found: C, 62.8; H, 3.4; N, 6.2%.

4-[α-(4-Iodophenyl)-α-1,3-indanedionylmethyl]-1-(2H) phthalazinone (6e): Light yellow crystals; m.p. 278–279°C. IR (KBr): 3322 (N–H), 1710, 1669 (C=O), 1594, 1261, 750 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 9.68 (s, N–H), 8.36–8.33 (m, 1 H), 8.00–7.92 (m, 2 H), 7.89–7.78 (m, 2 H), 7.73–7.63 (m, 4 H), 7.48–7.45 (m, 1 H), 7.11 (d, *J* = 8.4 Hz, 2 H), 5.47 (d, *J* = 3.8 Hz, 1 H), 3.54 (d, *J* = 3.8 Hz, 1 H). ¹³C NMR (75 MHz, CDCl₃): δ = 198.6, 197.5, 159.6, 143.7, 142.9, 140.8, 138.4, 137.9 (2C), 135.6, 134.8, 133.6, 131.6, 131.0 (2C), 128.7, 128.2, 127.1, 125.6, 123.2, 123.0, 93.4, 56.2, 46.8. Anal. Calcd for C₂₄H₁₅IN₂O₃: C, 56.94; H, 2.99; N, 5.53. Found: C, 57.1; H, 3.2; N, 5.7%.

4-[α-(4-Methylphenyl)-α-1, 3-indanedionylmethyl]-1-(2H)phthalazinone (6f): Colourless crystals; m.p. 284–285°C. IR (KBr): 3245 (N–H), 1710, 1680 (C=O), 1594, 1257, 766 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ=9.35 (s, N–H), 8.35–8.32 (m, 1 H), 7.99–7.91 (m, 2 H), 7.87–7.78 (m, 2 H), 7.68–7.59 (m, 2 H), 7.53–7.50 (m, 1 H), 7.22 (d, J = 8.0 Hz, 2 H), 7.17 (d, J = 8.0 Hz, 2 H), 5.49 (d, J = 3.9 Hz, 1 H), 3.54 (d, J = 3.9 Hz, 1 H), 2.33 (s, 3 H). ¹³C NMR (75 MHz, CDCl₃): δ = 199.1, 197.7, 159.6, 144.5, 143.0, 140.9, 137.4, 135.6, 135.5, 134.7, 133.5, 131.5, 129.5 (2C), 129.1, 128.9 (2C), 128.2, 126.9, 125.9, 123.1, 122.9, 56.6, 47.0, 21.1. Anal. Calcd for C₂₅H₁₈N₂O₃: C, 76.13; H, 4.60; N, 7.10. Found: C, 76.3; H, 4.7; N, 7.2%.

4-[α-(4-methoxyphenyl)-α-1, 3-indanedionylmethyl]-1-(2H)phthalazinone(**6g**): Colourless crystals; m.p. 265–266°C. IR (KBr): 3233 (N-H), 1708, 1670 (C=O), 1595, 1507, 1245, 753 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ = 10.55 (s, N-H), 8.32 (d, *J* = 7.5 Hz, 1 H), 7.98 (d, *J* = 7.5 Hz, 1 H), 7.91 (d, *J* = 7.5 Hz, 1 H), 7.87–7.79 (m, 2 H), 7.67–7.60 (m, 2 H), 7.51(d, *J* = 7.5 Hz, 1 H), 7.87–7.79 (m, 2 H), 6.86 (d, *J* = 8.5 Hz, 2 H), 5.47 (d, *J* = 3.5 Hz, 1 H), 7.8 (s, 3 H), 3.55 (d, *J* = 3.5 Hz, 1 H). ¹³C NMR (125 MHz, CDCl₃): δ = 199.3, 198.0, 160.2, 159.0, 143.8, 143.3, 141.1, 135.5, 134.8, 133.3, 131.3, 131.1, 130.4 (2C), 129.2, 128.6, 126.7, 125.9, 123.1, 123.0, 114.2 (2C), 56.8, 55.4, 46.7. Anal. Calcd for C₂₅H₁₈N₂O₄: C, 73.16; H, 4.42; N, 6.83. Found: C, 73.3; H, 4.5; N, 6.75%.

4-[α-(3,4-dimethoxyphenyl)-α-1,3-indanedionylmethyl]-1-(2H)phthalazinone (**6h**): Light yellow crystals; m.p. 247–248°C. IR (KBr): 3210 (N–H), 1708, 1666 (C=O), 1596, 1514, 1250, 759 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 9.36$ (s, N–H), 8.35-8.32 (m, 1 H), 8.01–7.80 (m, 4 H), 7.68–7.54 (m, 3 H), 6.91(d, J = 1.8 Hz, 1 H), 6.88–6.80 (m, 2 H), 5.45 (d, J = 3.6 Hz, 1 H), 3.86 (s, 3 H), 3.85 (s, 3 H), 3.55 (d, J = 3.6 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃): $\delta = 199.5$, 199.0, 160.0, 149.5, 148.9, 145.0, 143.5, 141.3, 135.9, 135.2, 133.9, 131.9, 131.5, 129.5, 128.6, 127.3, 126.3, 123.5, 123.3, 122.0, 112.7, 111.6, 57.0, 56.4, 56.2, 47.6, Anal. Calcd for C₂₆H₂₀N₂O₅: C, 70.90; H, 4.58; N, 6.36. Found: C, 71.0; H, 4.5; N, 6.5%.

4-[α-(3-Methyl-4-hydroxyphenyl)-α-1,3-indanedionylmethyl]-1-(2H)-phthalazinone (**6i**): Colourless crystals; m.p. 285–286°C. IR (KBr): 3575, 3182(N–H), 1704, 1657(C=O), 1595, 1254, 751 cm⁻¹. ¹H NMR (300 MHz, DMSO-d₆): δ = 12.17 (s, N–H), 9.18 (s, 1 H), 8.15–8.13 (m, 1 H), 7.92–7.63 (m, 7 H), 7.04 (br. s, 1 H), 6.85 (d, J = 8.2 Hz, 1 H), 6.63 (d, J = 8.2 Hz, 1 H), 5.33 (d, J = 4.2 Hz, 1 H), 8.66 (d, J = 4.2 Hz, 1 H), 2.03 (s, 3 H). ¹³C NMR (125 MHz, DMSOd₆): δ = 200.6, 198.7, 160.0, 155.2, 144.6, 143.6, 141.4, 136.5, 135.7, 134.3, 132.3, 132.2, 130.1, 129.5, 128.7, 128.5, 126.8, 126.6, 124.3, 123.6, 123.3, 115.2, 57.1, 46.4, 17.1. Anal. Calcd for C₂₅H₁₈N₂O₄: C, 73.16; H, 4.42; N, 6.83. Found: C, 73.3; H, 4.3; N, 7.0%.

4-[α-(2-methyl-4-hydroxy-5-isopropylphenyl)-α-1, 3indanedionylmethyl]-1-(2H)-phthalazinone (6j): Light yellow crystals; m.p. 288–289°C. IR (KBr): 3378, 2957 (N–H), 1699, 1667 (C=O), 1598, 1250, 768 cm⁻¹. ¹H NMR (300 MHz, DMSO-d₆): δ = 12.20 (s, N-H), 9.07 (s, 1 H), 8.13–8.10 (m, 1 H), 7.92–7.86 (m, 4 H), 7.71–7.66 (m, 2 H), 7.28–7.25 (m, 1 H), 6.63 (s, 1 H), 6.55 (s, 1 H), 5.35 (d, *J* = 3.7 Hz, 1 H), 3.79 (d, *J* = 3.7 Hz, 1 H), 2.98–2.91 (m, 1 H), 2.44 (s, 3 H), 1.00 (d, *J* = 6.8 Hz, 3 H), 0.67 (d, *J* = 6.8 Hz, 3 H). Anal. Calcd for C₂₈H₂₄N₂O₄: C, 74.32; H, 5.35; N, 6.19. Found: C, 74.4; H, 5.5; N, 6.3%. General procedure for preparation of 1-aryl-1,2-di[3,4-dihydro-4oxophthalazin-1-yl]ethanes (7a–j): The appropriate intermediate 3a–j (1.4 mmol) was added to hydrazine hydrate (10 ml, 99%) and the mixture was heated in a boiling water-bath for the time indicated in Table 3. During heating some solid product was precipitated. The cooled reaction mixture was acidified with HCl (6 M) to pH 6. The solid product separated was filtered and washed thoroughly with water. The resulting solids were purified by crystallisation from acetone.

1-Phenyl-1,2-di[3,4-dihydro-4-oxophthalazin-1-yl]ethane (7a): Colourless crystals; m.p. 354–356°C. IR (KBr): 3169, 3033, 2900 (N–H), 1650 (C=O), 1348, 781 cm⁻¹. ¹H NMR (300 MHz, DMSO d_6): $\delta = 12.59$ (s, N–H), 12.32 (s, N–H), 8.24 (d, J = 7.4 Hz, 2 H), 8.07–8.00 (m, 2 H), 7.92–7.74 (m, 4 H), 7.39 (d, J = 7.5 Hz, 2 H), 7.27 (t, J = 7.3 Hz, 2 H), 7.17 (t, J = 7.0 Hz, 1 H), 5.37 (apparent q, 1 H), 4.10 (dd, J = 16.0, 9.1 Hz, 1 H), 3.39 (dd, J = 16.0, 5.6 Hz, 1 H). ¹³C NMR (75 MHz, DMSO- d_6): $\delta = 159.7$, 159.6, 146.5, 144.3, 142.9, 134.0, 133.9, 131.8, 131.7, 130.0, 129.7, 129.2 (2C), 128.4 (2C), 127.8, 127.3, 126.5, 126.3, 125.7, 125.5, 43.5, 36.5. Anal. Calcd for C₂₄H₁₈N₄O₂: C, 73.08; H, 4.60; N, 14.21. Found: C, 73.2; H, 4.7; N, 14.3%.

l-(4-Fluorophenyl)-1,2-di[3,4-dihydro-4-oxophthalazin-1-yl]ethane (**7b**): Colourless crystals; m.p. 303–304°C. IR (KBr): 3172, 3014, 2899(N–H), 1653 (C=O), 1504, 1349, 780 cm⁻¹. ¹H NMR (300 MHz, DMSO-d_6): δ = 12.59 (s, N–H), 12.32 (s, N–H), 8.24 (d, J = 7.4 Hz, 2 H), 8.08–8.00 (m, 2 H), 7.93–7.76 (m, 4 H), 7.45–7.40 (m, 2 H), 7.09 (t, J = 8.6 Hz, 2 H), 5.38 (apparent q, 1 H), 4.07 (dd, J = 15.9, 9.0 Hz, 1 H), 3.36 (dd, J = 15.9, 5.7 Hz, 1 H). ¹³C NMR (75 MHz, DMSO-d_6): δ = 159.3, 159.2, 146.1, 143.9, 138.6, 133.6, 131.5, 131.4, 130.0, 129.9, 129.6, 129.2, 128.0, 127.4, 126.1, 126.0, 125.3, 125.1, 115.6 (2C), 115.4 (2C), 42.3, 36.2. Anal. Calcd for C₂₄H₁₇FN₄O₂: C, 69.90; H, 4.15; N, 13.58. Found: C, 70.0; H, 4.3; N, 13.7%.

l-(4-Chlorophenyl)-1,2-di[3,4-dihydro-4-oxophthalazin-1yl]ethane (7c): Colourless crystals; m.p. 334–335°C. IR (KBr): 3171, 3041, 2895 (N–H), 1657 (C=O), 1483, 1347, 787 cm⁻¹. ¹H NMR (300 MHz, DMSO-d₆): δ = 12.62 (s, N–H), 12.33 (s, N–H), 8.24 (d, *J* = 6.7 Hz, 2 H), 8.08–7.99 (m, 2 H), 7.90–7.78 (m, 4 H), 7.41 (d, *J* = 7.5 Hz, 2 H), 7.33 (d, *J* = 7.5 Hz, 2 H), 5.38 (*apparent* q, 1 H), 4.07 (dd, *J* = 15.7, 8.5 Hz, 1 H), 3.38 (dd, *J* = 15.7, 5.8 Hz, 1 H). ¹³C NMR (75 MHz, DMSO-d₆): δ = 159.7, 159.6, 146.2, 144.2, 141.9, 134.0, 133.9, 132.0, 131.9, 131.8, 130.3 (2C), 129.9, 129.6, 129.1 (2C), 128.4, 127.8, 126.5, 126.4, 125.6, 125.5, 42.8, 36.4. Anal. Calcd for C₂₄H₁₇ClN₄O₂: C, 67.20; H, 3.99; N, 13.07. Found; C, 67.3; H, 4.15; N, 13.2%.

l-(*4*-*Bromophenyl*)-*1*, 2-*di*[3, 4-*dihydro*-4-*oxophthalazin*-1*yl*]*ethane* (**7d**): Colourless crystals; m.p. 350–352°C. IR (KBr): 3169, 3036, 2893 (N–H), 1657 (C=O), 1476, 1345, 784 cm⁻¹. ¹H NMR (300 MHz, DMSO-*d*₆): $\delta = 12.62$ (s, N–H), 12.33 (s, N–H), 8.24 (d, *J* = 7.6 Hz, 2 H), 8.07 (d, *J* = 7.6 Hz, 1 H), 8.00 (d, *J* = 7.5 Hz, 1 H), 7.93–7.76 (m, 4 H), 7.46 (d, *J* = 8.0 Hz, 2 H), 7.35 (d, *J* = 8.0 Hz, 2 H), 5.36 (*apparent* q, 1 H), 4.07 (dd, *J* = 15.9, 8.9 Hz, 1 H), 3.37 (dd, *J* = 15.9, 5.7 Hz, 1 H). ¹³C NMR (75 MHz, DMSO-*d*₆): $\delta = 159.7$, 159.6, 146.2, 144.1, 142.3, 134.0, 133.9, 132.0 (2C), 131.9, 131.8, 130.7 (2C), 129.9, 129.6, 128.4, 127.8, 126.5, 126.4, 125.6, 125.5, 120.5, 42.8, 36.3. Anal. Calcd for C₂₄H₁₇BrN₄O₂: C, 60.90; H, 3.62; N, 11.84. Found: C, 61.05; H, 3.7; N, 12.0%.

1-(4-Iodophenyl)-1,2-di[3,4-dihydro-4-oxophthalazin-1-yl]ethane (7e): Light yellow crystals; m.p. 356–358°C. IR (KBr): 3168, 3036, 2892 (N–H), 1654 (C=O), 1474, 1345, 783 cm⁻¹. ¹H NMR (300 MHz, DMSO-*d*₆): δ = 12.61 (s, N–H), 12.33 (s, N–H), 8.24 (d, *J* = 7.1 Hz, 2 H), 8.07 (d, *J* = 7.4 Hz, 1 H), 7.98 (d, *J* = 7.3 Hz, 1 H), 7.93–7.78 (m, 4 H), 7.63 (d, *J* = 7.5 Hz, 2 H), 7.20 (d, *J* = 7.5 Hz, 2 H), 5.33 (*apparent* q, 1 H), 4.06 (dd, *J* = 15.8, 8.4 Hz, 1 H), 3.38 (dd, *J* = 15.8, 5.7 Hz, 1 H). ¹³C NMR (75 MHz, DMSO-*d*₆): δ = 159.7, 159.6, 146.1, 144.1, 142.7, 137.9 (2C), 134.0, 133.9, 131.9, 131.8, 130.8 (2C), 129.9, 129.6, 128.3, 127.8, 126.5, 126.4, 125.6, 125.5, 93.3, 42.9, 36.3. Anal. Calcd for C₂₄H₁₇IN₄O₂: C, 55.40; H, 3.29; N,10.77. Found: C, 55. 6; H, 3.4; N, 10.9%.

1-(4-Methylphenyl)-1,2-di[*3,4-dihydro-4-oxophthalazin-1-yl]ethane* (7f): Colourless crystals; m.p. 332–334°C. IR (KBr): 3170, 3034, 2896 (N–H), 1657 (C=O), 1345, 776 cm⁻¹. ¹H NMR (300 MHz, DMSO-*d*₆): δ = 12.56 (s, N–H), 12.33 (s, N–H), 8.24 (d, *J* = 7.5 Hz, 2 H), 8.05 (d, *J* = 7.7 Hz, 1 H), 7.99 (d, *J* = 7.7 Hz, 1 H), 7.92–7.74 (m, 4 H), 7.25 (d, *J* = 7.6 Hz, 2 H), 7.07 (d, *J* = 7.6 Hz, 2 H), 5.31 (*apparent* q, 1 H), 4.07 (dd, *J* = 15.9, 8.9 Hz, 1 H), 3.35 (dd, *J* = 15.9, 5.7 Hz, 1 H), 2.20 (s, 3 H). ¹³C NMR (75 MHz, DMSO-*d*₆): δ = 159.7, 159.6, 146.6, 144.4, 139.9, 136.3, 134.0, 133.9, 131.8, 131.7, 130.0, 129.8 (2C), 128.4, 128.2 (2C), 127.8, 126.5, 126.3,

10 JOURNAL OF CHEMICAL RESEARCH 2007

125.7, 125.4, 43.1, 36.5, 21.0. Anal. Calcd for C₂₅H₂₀N₄O₂: C, 73.51; H, 4.93; N, 13.72. Found: C, 73.6; H, 5.0; N, 13.8%. *I-(4-Methoxyphenyl)-1,2-di[3,4-dihydro-4-oxophthalazin-1-*

l-(4-Methoxyphenyl)-1,2-di[3,4-dihydro-4-oxophthalazin-1yl]ethane (7g): Colourless prisms; m.p. 325–326°C. IR (KBr): 3176 (N–H), 1653 (C=O), 1087, 780 cm⁻¹. ¹H NMR (300 MHz, DMSOd₆): δ = 12.51 (s, N–H), 12.27 (s, N–H), 8.19 (d, J = 7.6 Hz, 2 H), 7.97 (t, J = 8.3 Hz, 2 H), 7.87–7.69 (m, 4 H), 7.23 (d, J = 8.6 Hz, 2 H), 6.77 (d, J = 8.6 Hz, 2 H), 5.25 (apparent q, 1 H), 4.01(dd, J = 16.0, 9.0 Hz, 1 H), 3.61 (s, 3 H), 3.31 (dd, J = 16.0, 5.7 Hz, 1 H). ¹³C NMR (75 MHz, DMSO-d₆): δ = 159.4, 159.3, 158.2, 146.4, 144.1, 134.3, 133.5, 133.4, 131.3, 131.2, 129.6, 129.3, 128.9 (2C), 128.0, 127.4, 126.1, 126.0, 125.2, 125.0, 114.2 (2C), 55.1, 42.6, 36.2. Anal. Calcd for C₂₅H₂₀N₄O₃: C, 70.74; H, 4.75; N, 13.20. Found: C, 70.8; H, 4.7; N, 13.3%.

I-(3,4-Dimethoxyphenyl)-1,2-di[3,4-dihydro-4-oxophthalazin-1-yl]ethane(**7h**): Colourless needles; m.p. 318–320°C. IR (KBr): 3165 (N–H), 1650 (C=O), 1511, 1259, 778 cm⁻¹. ¹H NMR (300 MHz, DMSO-d₆): δ = 12.52 (s, N–H), 12.30 (s, N–H), 8.19 (d, J = 7.6 Hz, 2 H), 7.99 (t, J = 7.4 Hz, 2 H), 7.89–7.76 (m, 4 H), 6.97 (s, 1 H), 6.76–6.71 (m, 2 H), 5.24 (apparent q, 1 H), 4.02 (dd, J = 16.2, 9.0 Hz, 1 H), 3.63 (s, 3 H), 3.61 (s, 3 H), 3.34 (dd, J = 16.2, 5.4 Hz, 1 H). ¹³C NMR (75 MHz, DMSO-d₆): δ = 159.4, 159.3, 149.0, 147.9, 146.3, 144.2, 134.9, 133.5, 133.3, 131.4, 131.2, 129.7, 129.4, 128.0, 127.4, 126.0, 125.9, 125.3, 125.0, 119.9, 112.4 (2C), 55.7 (2C), 42.9, 36.1. Anal. Calcd for C₂₆H₂₂N₄O₄: C, 68.71; H, 4.88; N, 12.33. Found: C, 68.8; H, 4.95; N, 12.4%.

I-(3-*Methyl*-4-*hydroxyphenyl*)-1,2-*di*[3,4-*dihydro*-4*oxophthalazin*-1-*yl*]*ethane* (7i): Colourless needles; m.p. 336–338°C. IR (KBr): 3166 (N–H), 2922, 1656 (C=O), 1490, 1246, 777 cm⁻¹. ¹H NMR (500 MHz, DMSO-*d*₆): δ = 12.50 (s, N–H), 12.29 (s, N–H), 9.19 (s, –OH, 1 H), 8.23 (d, *J* = 7.6 Hz, 2 H), 8.03 (d, *J* = 8.0 Hz, 1 H), 7.98 (d, *J* = 8.0 Hz, 1 H), 7.89 (t, *J* = 7.3 Hz, 1 H), 7.82 (t, *J* = 7.5 Hz, 2 H), 7.76 (t, *J* = 7.5 Hz, 1 H), 7.04 (*br*. s, 1 H), 6.96 (d, *J* = 8.0 Hz, 1 H), 6.65 (d, *J* = 8.0 Hz, 1 H), 5.18 (*apparent* q, 1 H), 4.03 (dd, *J* = 16.0, 9.2 Hz, 1 H), 3.31 (dd, *J* = 16.0, 5.3 Hz, 1 H), 2.02 (s, 3 H). ¹³C NMR (125 MHz, DMSO-*d*₆): δ = 160.2, 160.1, 155.0, 147.3, 145.1, 134.4, 134.3, 133.3, 132.2, 132.1, 130.7, 130.4, 130.2, 128.7, 128.1, 127.0, 126.8, 126.7, 126.2, 125.9, 124.9, 115.6, 43.3, 37.1, 17.0. Anal. Calcd for C₂₅H₂₀N₄O₃: C, 70.74; H, 4.75; N, 13.20. Found: C, 70.85; H, 4.8; N, 13.3%.

l-(2-methyl-4-hydroxy-5-isopropylphenyl)-1,2-di[3,4-dihydro-4-oxophthalazin-1-yl]- ethane (**7j**): Colourless crystals; m.p. 303– 304°C. IR (KBr): 3299, (N–H), 2905, 1659(C=O), 1499, 1414, 1347, 773 cm⁻¹.¹HNMR (300 MHz, DMSO-d₆): δ = 12.54 (s, N–H), 12.33 (s, N–H), 9.06 (s, –OH, 1 H), 8.23 (d, *J* = 7.1 Hz, 2 H), 8.01 (d, *J* = 7.5 Hz, 1 H), 7.86–7.73 (m, 4 H), 7.60 (d, *J* = 7.5 Hz, 1 H), 6.75 (s, 1 H), 6.55 (s, 1 H), 5.30 (apparent q, 1 H), 3.95 (dd, *J* = 15.9, 9.2 Hz, 1 H), 3.25 (dd, *J* = 15.9, 5.7 Hz, 1 H), 2.97 (m, 1 H), 2.25 (s, 3 H), 1.04 (d, *J* = 6.8 Hz, 3 H), 0.84 (d, *J* = 6.8 Hz, 3 H). ¹³C NMR (75 MHz, DMSO-d₆): δ = 159.7, 159.6, 153.4, 146.9, 144.8, 134.0, 133.9, 133.2, 132.3, 131.8, 131.6, 131.0, 130.1, 129.8, 128.2, 127.7, 126.5, 126.3, 125.6, 125.2, 125.1, 117.6, 40.0, 35.5, 26.7, 23.1, 22.6, 19.1. Anal. Calcd for C₂₈H₂₆N₄O₃: C, 72.08; H, 5.62; N, 12.01. Found: C, 72.2; H, 5.7; N, 12.15%.

X-ray crystal structure analysis

3b: Formula $C_{24}H_{13}FO_4$, $\dot{M} = 384.34$, light yellow crystal $0.30 \times 0.15 \times 0.10 \text{ mm}$, a = 18.362(1), b = 15.767(1), c = 12.996(1) Å, $\beta = 100.40(1)^\circ$, V = 3700.7(4) Å³, $\rho_{calc} = 1.380 \text{ g cm}^{-3}$, $\mu = 1.01 \text{ cm}^{-1}$, empirical absorption correction ($0.970 \le T \le 0.990$), Z = 8, monoclinic, space group C2/c (No. 15), $\lambda = 0.71073$ Å, T = 198 K, ω and ϕ scans, 14764 reflections collected ($\pm h$, $\pm k$, $\pm l$), [($\sin\theta/\lambda$] = 0.66 Å⁻¹, 4411 independent ($R_{int} = 0.059$) and 2883 observed reflections [$I \ge 2 \sigma(I)$], 262 refined parameters, R = 0.049, $wR^2 = 0.135$, max. residual electron density 0.24 (-0.20) e Å⁻³, hydrogen atoms calculated and refined riding.

3f: Formula C₂₅H₁₆O₄, M = 380.38, colourless crystal 0.35 × 0.15 × 0.15 mm, a = 18.814(1), b = 16.151(1), c = 12.817(1) Å, $\beta = 102.86(1)^\circ$, V = 3796.9(4) Å³, $\rho_{calc} = 1.331$ g cm⁻³, $\mu = 7.32$ cm⁻¹, empirical absorption correction (0.784 $\leq T \leq 0.898$), Z = 8, monoclinic, space group C2/c (No. 15), $\lambda = 1.54178$ Å, T = 223 K, ω and φ scans, 14159 reflections collected (±h, ±k, ±l), [(sinθ)/\lambda] = 0.60 Å⁻¹, 3311 independent ($R_{int} = 0.032$) and 3114 observed reflections [$I \geq 2 \sigma(I)$], 263 refined parameters, R = 0.040, $wR^2 = 0.104$, max. residual electron density 0.20 (-0.17) e Å⁻³, hydrogen atoms calculated and refined riding.

4b: Formula $C_{24}H_{13}FO_4$, M = 384.34, yellow crystal $0.40 \times 0.35 \times 0.15 \text{ mm}$, a = 7.603(1), b = 10.584(1), c = 12.369(1) Å, $\alpha = 64.71(1)$, $\beta = 84.66(1)$, $\gamma = 83.42(1)^\circ$, V = 892.9(2) Å³, $\rho_{calc} = 1.429 \text{ g cm}^3$,

 $\mu = 8.69 \text{ cm}^{-1}$, empirical absorption correction (0.723 $\leq T \leq 0.881$), Z = 2, triclinic, space group *P*1bar (No. 2), $\lambda = 1.54178 \text{ Å}$, T = 223 K, ω and φ scans, 9277 reflections collected ($\pm h$, $\pm k$, $\pm l$), [(sin θ)/ λ] $= 0.60 \text{ Å}^{-1}$, 3098 independent($R_{\text{int}} = 0.029$) and 2992 observed reflections [$I \geq 2 \sigma(I$]], 262 refined parameters, R = 0.043, $wR^2 =$ 0.116, max. residual electron density 0.20 (-0.32) e Å⁻³, hydrogen atoms calculated and refined riding.

6j: Formula $C_{28}H_{23}N_2O_4 * C_3H_6O$, M = 510.57, light yellow crystal $0.15 \times 0.10 \times 0.05$ mm, a = 8.236(1), b = 12.667(1), c = 13.204(2) Å, $\alpha = 100.94(1)$, $\beta = 92.55(1)$, $\gamma = 102.39(1)^\circ$, V = 1315.8(2) Å³, $\rho_{calc} = 1.289$ g cm⁻³, $\mu = 7.10$ cm⁻¹, no absorption correction $(0.901 \le T \le 0.965)$, Z = 2, triclinic, space group P1bar (No. 2), $\lambda = 1.54178$ Å, T = 223 K, ω and φ scans, 5978 reflections collected (±h, ±k, ±l), [(sinθ)/ λ] = 0.57 Å⁻¹, 2444 independent ($R_{int} = 0.112$) and 1064 observed reflections [$I \ge 2 \sigma(I)$], 352 refined parameters, R = 0.088, $wR^2 = 0.202$, max. residual electron density 0.31 (-0.30) e Å⁻³, hydrogen atoms calculated and refined riding, due to the small and poorly diffracting crystal the analysis is of limited accuracy and was only done to prove the connectivity and conformation.

CCDC 281591 (3b), CCDC 281590 (3f), CCDC 281592 (4b) and CCDC 258440 (6j) contain the supplementary crystallographic data for this paper. They can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request.cif.

The authors are grateful to UGC, New Delhi and the University of Calcutta for providing financial support. S. D. is thankful to CSIR, New Delhi for providing him with a Senior Research Fellowship.

Received 28 August 2006; accepted 23 November 2006 Paper 06/4160

References

- (a) S. Das, A. Pramanik, R. Fröhlich and A. Patra, *Tetrahedron*, 2004, 60, 10197; (b) S. Das, R. Fröhlich and A. Pramanik, *J. Chem. Res.*, 2005, 572.
- 2 D.A. Klumpp, S. Fredrick, S. Lau, K.K. Jin, R. Bau, G.K.S. Prakash and G.A. Olah, *J. Org. Chem.*, 1999, 64, 5152.
- 3 (a) V.G. Nenajdenko, N.E. Shevchenko, E.S. Balenkova and I.V. Alabugin, Chem. Rev., 2003, 103, 229; (b) D.A. Klumpp, K.Y. Yeung, G.K.S. Prakash and G.A. Olah, J. Org. Chem., 1998, 63, 4481; (c) T. Yamazaki, S.-i. Satio, T. Ohwada and K. Shudo, Tetrahedron Lett., 1995, 36, 5749; (d) G.A. Olah, Angew. Chem., Int. Ed. Engl., 1993, 32, 767; (e) G.K.S. Prakash and P.v.R. Schleyer, Eds. Stable Carbocation Chemistry; Wiley: New York, 1997; (f) A. Berkessel and R.K. Thauer, Angew. Chem., Int. Ed. Engl., 1995, 34, 2247; (g) D.A. Klumpp, D.N. Baek, G.K.S. Prakash and G.A. Olah, J. Org. Chem., 1997, 62, 6666.
- 4 B. Abd El-Fattah, M.I. Al-Ashmani, S. El-Feky and E. Roeder, *Egypt. J. Pharm. Sci.*, 1987, **28**, 383.
- 5 B.L. Mylari, E.R. Larson, T.A. Beyer, W.J. Zembrowski, C.E. Aldinger, M.F. Dee, T.W. Siegel and D.H. Singleton, J. Med. Chem., 1991, 34, 108.
- 6 J.C. Kemp, E.O. Meltzer, H.A. Orgel, H.J. Welch, G.A. Bucholtz, E. Middleton, Jr., S.L. Spector, J.J. Newton and J.L. Perkach, Jr., J. Allergy Clin. Immunol., 1987, 79, 893.
- 7 G. Bold, K.-H. Altmann, J. Frei, M. Lang, P.W. Manley, P. Traxler, B. Wietfeld, J. Brueggen, E. Buchdunger, R. Cozens, S. Ferrari, P. Furet, F. Hofmann, G. Martiny-Baron, J. Mestan, J. Roesel, M. Sills, D. Stover, F. Acemoglu, E. Boss, R. Emmenegger, L. Laesser, E. Masso, R. Roth, C. Schlachter, W. Vetterli, D. Wyss and J.M. Wood, *J. Med. Chem.*, 2000, 43, 2310.
- 8 M. Yamaguchi, K. Kamei, T. Koga, M. Akima, T. Kuroki and N. Ohi, J. Med. Chem., 1993, 36, 4052.
- 9 (a) S. Marcaccini, R. Pepino, C. Polo and M.C. Pozo, Synthesis, 2001, 85; (b) J. Epsztajn, Z. Malinowski, J.Z. Brzezinki and M. Karzatka, Synthesis, 2001, 2085; (c) Y. Saito, T. Sakamoto and Y. Kikugawa, Synthesis, 2001, 221; (d) A.M. Bernard, M.T. Cocco, C. Congiu, V. Onnis and P.P. Piras, Synthesis, 1998, 317; (e) N.R. Patel, Condensed Pyridazines Including Cinnolines and Phthalazines; R.N. Castle, Ed.; Wiley-Interscience: New York, 1973, 383; (f) M. Yamaguchi, K. Kamei, T. Koga, M. Akima, A. Maruyama, T. Kuroki and N. Ohi, J. Med. Chem., 1993, 36, 4061; (g) S.K. Kundu, A. Pramanik and A. Patra, Synlett, 2002, 823; (h) S. Das, R. Fröhlich and A. Pramanik, J. Chem. Res., 2006, 84; (i) M. Pal, V.R. Batchu, K. Parasuraman and K.R. Yeleswarapu, J. Org. Chem., 2003, 68, 6806.
- 10 Data sets were collected with Nonius KappaCCD diffractometers, in case of Mo-radiation equipped with a rotating anode generator. Programs used: data collection COLLECT (B.V. Nonius, 1998), data reduction Denzo-SMN (Z. Otwinowski and W. Minor, *Methods in Enzymology*, 1997, 276, 307), structure solution SHELXS-97 (G.M. Sheldrick, *Acta Cryst.*, 1990, A46, 467), structure refinement SHELXL-97 (G.M. Sheldrick, Universität Göttingen, 1997), graphics SCHAKAL (E. Keller, 1997).